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LETTER TO THE EDITOR 

Droplets in the two-dimensional critical Ising model and 
conformal invariance 

Theodore W Burkhardtt 9, Walter Selke$ and Tianyou XuetP 
t Department of Physics, FM-15, University of Washington, Seattle, WA 98195, USA 
$ Institut fur  Festkorperforschung der KFA Julich, Postfach 1913, D-5170 Julich, Federal 
Republic of Germany 

Received 10 July 1989 

Abstract. The equilibrium form of droplets at a wall and around a fixed interior spin in 
the two-dimensional critical Ising model is derived using conformal invariance methods. 
The results are in good agreement with Monte Carlo simulations. 

In this letter the two-dimensional Ising model with the boundary conditions shown in 
figures l ( a )  and l ( b )  is considered. The Ising model of figure l ( a )  is semi-infinite 
and has fixed boundary spins, all of which are positive except for L adjacent negative 
spins. Figure l ( b )  depicts a finite N x N Ising model with positive boundary spins 
and one fixed negative spin at the centre. 

I’ 

L -  c_ X 

l o )  

Ibl 
Figure 1. ( a )  Semi-infinite king model with droplet nucleated by L adjacent down spins. 
( b )  Square N x N Ising model with droplet nucleated by a fixed spin at the centre. 
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The fixed negative spins in figure 1 nucleate extended droplets of negative local 
magnetisation. For L >> 1 and T < T, the shape of the droplet at a wall corresponding 
to figure l ( a )  is presumably elliptical, as follows from SOS interface models [ l ,  21 and 
random walk [3] arguments. For L >> 1 the droplet radius extends a distance of order 
L”2 lattice constants from the boundary. These results are consistent with Abraham’s 
exact expression [4] for the magnetisation profile of the Ising model along the symmetry 
axis x = 0 of the droplet and with Monte Carlo simulations of the Ising and three-state 
Potts models with the boundary geometry of figure l ( a )  by Selke [5]. 

In [5] simulations of an interior droplet for the boundary geometry of figure l ( b )  
are also reported. At the bulk critical temperature T, the droplet becomes circular in 
the large-N limit, and its radius is given by 

N >> 1. (1) 

The exponent 4 in equation ( 1 )  follows [5] from a model-independent finite-size scaling 
argument. 

In  this letter the exact local magnetisation of the two-dimensional Ising model with 
the two boundary conditions shown in figure 1 is derived using conformal invariance 
[6] methods. The results hold at the bulk critical temperature T, in the continuum 
limit L, N >> 1. At T, the droplet at a wall has a semicircular shape with radius L/2, 
as compared with an elliptical shape with semi-axis of order L”* for T < T,. Conformal 
invariance confirms equation (1) and implies c = 0.181 671 for the proportionality 
constant. These predictions are compared with Monte Carlo simulations, and good 
agreement is found. 

First we derive the magnetisation m,(x ,  y )  for the boundary conditions of figure 
l ( a ) .  The mixed boundary conditions along the x axis may be replaced by a uniform 
spin-up boundary condition if an antiferromagnetic seam of length L is inserted along 
the x axis. Introducing the antiferromagnetic seam with disorder operators [7], we 
express the magnetisation in the form 

R = cN’/’  

Here a ( x ,  y )  and ~ ( x ,  y )  denote Ising spin and disorder variables, respectively. The 
correlation functions in equation (2)  are evaluated with uniform spin-up boundary 
conditions along the x axis. 

By duality [8] the two-point correlation function in equation (2)  is the same as the 
spin-spin correlation function in the half space with free-spin boundary conditions. 
This function, calculated by Cardy [9], is given in equation (10) below. The three-point 
function in equation (2)  was derived by Burkhardt and Guim [ 101. Inserting the results 
in equation (2), we obtain 

( 3 )  

for the local magnetisation corresponding to the droplet at a wall. The numerical value 
of the constant A is given in equation ( 1 2 ) .  From equation ( 3 )  one sees that the 
magnetisation vanishes on the curve 

m,(x, y )  = A ” * ( y / 2 ) ~ ” ’ { 1  -y2L2[(x - L/2)2+y2]-’[(x + L/2)2+y2]-‘}”2 

x*+y2= (L/2)*.  (4) 

Thus, as mentioned above, the droplet is semicircular, with radius L/2. 
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Next we consider the magnetisation profile m N ( r )  for the boundary geometry of 
figure l (b) ,  defined by the thermal average 

Tr{a( r )  exp[ - P H  - ha( o)]} 
h-rm Tr exp[-PH - ha(o)] * 

m N ( r ) =  lim ( 5 )  

Here the central spin a ( o )  has been explicitly fixed by application of a local field h. 
For Ising spins that take the values U = *l ,  exp( -ha)  = ( 1  - U tanh h )  cosh h. Substitut- 
ing this identity into equation (5)  and taking the limit h +CO, we obtain 

Equation (6) expresses the droplet magnetisation mN ( r )  in terms of one- and two-point 
functions for the square geometry with fixed boundary spins but with no restrictions 
on the central spin. 

To see the origin of the exponent f in equation ( l ) ,  note that 

(a(  r ) )  -- (a(  0)) = B N - P / “  

( a ( r ) a ( o ) ) =  AYZP’”  (8) 

(7) 

for 1 << r << N, as follows from finite-size scaling [ 111 .  In this asymptotic regime 

reduces to the bulk pair correlation function. Substituting equations ( 7 )  and (8) into 
(6), one sees that m N ( r )  vanishes at a droplet radius given by equation ( l ) ,  with 
c = ( A / B )  The square-root law ( l ) ,  first derived in [5], holds for an interior droplet 
in an arbitrary critical system with characteristic size N >> 1. 

An explicit formula for m N ( r ) ,  analogous to equation (3) ,  may be obtained by 
conformal mapping of known correlation functions for the half-space according to [6] 

( a ( w l ) a ( w J . .  . ) = l w y z , ) W y z , ) .  . . l - P ’ L ’ ( a ( z l ) a ( z 2 ) .  . .). (9) 
Here z = x + iy and w = U + i u  are complex position coordinates, and w is an analytic 
function of z. 

For the Ising model defined on the half-space y > 0, Cardy [6,9] has obtained 

( a ( z , ) a ( z 2 ) )  = A(4yly2)- l ’s(~1’4* T - ” ~ ) ” ~  ( loa )  

~ = ~ ~ ~ 1 - ~ 2 ~ 2 + ~ Y , + ~ 2 ~ 2 1 / ~ ~ ~ l  - x 2 ) 2 + ( Y l  -Y2)21  ( lob)  
for the two-point function. The upper and lower signs correspond to fixed and free 
boundary spins, respectively. The correlation function is normalised to reduce to the 
bulk result (8) for y l y 2  >>(xI -x2)’+ ( y ,  -y2I2 .  For y 1 y 2 < <  (x, - x J 2 + ( y I  -y2I2 ,  
( a ( z l ) a ( z 2 ) )  factors as ( a ( z I ) ) ( a ( z 2 ) ) ,  with 

( a ( z ) )  = A1/2(y /2) -1 ’8  ( 1 1 )  
in the case of fixed boundary spins. For the Ising model on a square lattice with unit 
lattice constant, the amplitude A in equations (8), ( lo) ,  and ( 1 1 )  has the numerical 
value [12] 

(12) A = 2’”(0.645 002 448). 

The analytic function 

w ( z )  = K [( 1 - r 2 ) (  1 - / ~ ’ r ’ ) ] - ’ / ~  dr I: 
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with 0 < k < 1 and real, maps [ 131 the half plane 3 z  > 0 onto the rectangle - w(  1 )  < U < 
w( l ) ,  0 < U < w (  k - I ) .  An explicit expression for mN ( r )  in terms of incomplete elliptic 
integrals may be obtained by choosing K and k so that 2 w ( l )  = w(k-’) = N and then 
substituting equations (9)-( 13) into (6).  

We now consider the calculation of the proportionality constant c in equation ( 1 ) .  
As noted below equation (8), c = (A/  B )  ””’, where A and B are defined by equations 
(7) and (8). From (7),  (9) and ( 1 1 )  with P / v = Q ,  it follows that 

(14) ( a ( o ) )  = A1’2Jyow’(zo)/2~-’’8 = BN-”’. 

c = A2~yow’(zo)/2N~’’2.  ( 1 5 )  

Thus the droplet radius is given by equation ( 1 )  with 

Equations ( 1 )  and (15 )  are not limited to the square geometry, but hold for a droplet 
in any domain of characteristic size N onto which the upper half plane can be 
conformally mapped. The point zo is the particular point in the half plane that maps 
onto the centre of the droplet. 

For k 2  = 17 - 1 2 4 ,  and 1,  equation (13) maps the upper half plane onto N x N, 
N x 2 N and N x 00 rectangles, respectively [ 13, 141. For general k the point zo = iy, = 
ik-1/2 maps onto the centre of the rectangle. Combining equations (12), (13) and (15 ) ,  
we obtain c=0.181671, 0.196440 and 0.197374 for the N x N ,  N x 2 N  and N x c o  
rectangles, respectively. (The value of c for the N x OD rectangle or strip also follows 
directly from the mapping w = ( N /  T )  In z.) One sees that c is fairly insensitive to the 
aspect ratio of the rectangle. 

The radius R of a droplet at the centre of the Ising model on a square lattice with 
unit lattice constant and a circular boundary of radius N is also given by equation 
( l ) ,  with c = 0.247 372. This follows from the mapping w = N (  z - i ) / (  z + i )  of the half 
plane z z  > 0 onto the disc 1 wI < N. 

We now compare the theoretical predictions with Monte Carlo results. In our new 
simulations of the droplet at a wall, N x N systems were considered, as shown in 
figure 2. At criticality very long runs were necessary to obtain reliable equilibrium 
data. The first 40000 to 150000 Monte Carlo steps per spin were discarded. In 
calculating averages two or more runs, each of 150 000 to 300 000 Monte Carlo steps 
per spin, were performed, with the shorter runs for smaller systems. Further procedural 
details are the same as in [5]. 

The Monte Carlo results for the semi-axis y ,  of the Ising droplet at a wall are 
indicated by the filled circles in figure 2. For the larger base lengths L = 1 1  and 15, 
the data extrapolate in the large-N limit to values in excellent agreement with the 
prediction y ,  = L/2 (see equation (4))  of conformal invariance. As mentioned above, 
this prediction holds in the continuum limit L >> 1 .  For the smaller base lengths L = 5 
and 7, the extrapolated y ,  appears to be slightly less than L/2. 

Next we compare the square-root law ( 1 )  with c =0.181 671 for the Ising droplet 
around a fixed central spin in an N x N system with the Monte Carlo data in figure 
9 of [5]. The straight-line fit to the Ising data in figure 9 corresponds to c = 0.20, which 
is a little larger than the theoretical prediction. The slight discrepancy may be due to 
finite-size corrections. (Equations (6) and (9)-( 12) imply that the leading correction 
as N + cc to the right-hand side of equation (1)  is a geometry-independent additive 
constant 0.122 386.) For N = 200, the largest N considered in the simulations, the 
droplet radius R is only about three lattice constants. Thus most of the data do not 
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I 

Figure 2. Monte Carlo results for the semi-axis yln of a droplet of base length L at a wall 
in N x N king (filled circles) and three-state Potts (open circles) models. The straight 
lines intersect the y ,  axis at the theoretical prediction y,,, = L / 2 ,  L >> 1 for the Ising model 
and pass through the lsing data points at N = 21. The uncertainty in the data points is 
comparable to their diameter. 

satisfy the condition R >> 1 (continuum limit) assumed in the conformal invariance 
approach. 

In the critical three-state Potts model one also expects droplet sizes proportional 
to L and for the boundary geometries of figures l ( a )  and l (b) ,  respectively. This 
is confirmed by the Monte Carlo data shown in figure 2 (open circles) of this paper 
and in figure 9 of [5]. According to the Monte Carlo results the proportionality 
constants for the three-state Potts and Ising models are quantitatively very close, i.e. 
y, = L / 2  and c = 0.19 f 0.01 in both models. Extending our analytical approach to the 
three-state Potts model is unfortunately rather difficult. The two- and three-spin 
correlation functions in the half-space [15] needed to predict the droplet form have 
not yet been calculated. In the conformal theory of the three-state Potts model these 
correlation functions are determined by sixth-order differential equations, as compared 
with second-order for the Ising model [6]. 
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